Transfinite methods in metric fixed-point theory
نویسندگان
چکیده
منابع مشابه
Transfinite Methods in Metric Fixed-point Theory
This is a brief survey of the use of transfinite induction in metric fixed-point theory. Among the results discussed in some detail is the author’s 1989 result on directionally nonexpansive mappings (which is somewhat sharpened), a result of Kulesza and Lim giving conditions when countable compactness implies compactness, a recent inwardness result for contractions due to Lim, and a recent exte...
متن کاملFixed point theory in generalized orthogonal metric space
In this paper, among the other things, we prove the existence and uniqueness theorem of fixed point for mappings on a generalized orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point of Cauchy problem for the first order differential equation.
متن کاملFixed Point Theory in $varepsilon$-connected Orthogonal Metric Space
The existence of fixed point in orthogonal metric spaces has been initiated by Eshaghi and et. al [7]. In this paper, we prove existence and uniqueness theorem of fixed point for mappings on $varepsilon$-connected orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point for analytic function of one complex variable. The paper concludes with some i...
متن کاملAutonomous fixed point progressions and fixed point transfinite recursion
This paper is a contribution to the area of metapredicative proof theory. It continues recent investigations on the transfinitely iterated fixed point theories ÎDα (cf. [10]) and addresses the question of autonomity in iterated fixed point theories. An external and an internal form of autonomous generation of transfinite hierarchies of fixed points of positive arithmetic operators are introduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2003
ISSN: 1085-3375,1687-0409
DOI: 10.1155/s1085337503205029